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Separable two-dimensional discrete Hartley transform
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Bracewell has proposed the discrete Hartley transform (IDHT) as a substitute for the disereie Fourier transform
(17T, particularly as a means of convolution [J. Opt. Soe. Am. 73, 1832 (1983)]. Here we show that the most
nalural extension of the DHT to two dimensions fails to be separable in the two dimensions and is therefore
incflicient. We consider an alternative separable form and derive a corresponding convolution theorem. We also
argue thal the DHT is unlikely Lo provide faster convelution than the DET,

INTRODUCTION

In a series of recent papers Bracewell has drawn attention to
the Hartley transform as a substitute for the much more
widely known Fourier transform.' ¥ He has introduced a
discerete Hartley transform (DH'TY) as an analog to the dis-
crele Fourier transform (DFT) and has developed a [ast
algorithm (FHT) Lo compele with the fast Fourier trans-
form. Sorensen ef ald have developed a complete get of
algorithms for computation of the DHT, analogous to those
available for computation of the DFT., Buneman” has
shown how DFT algorithms may be converted to DHT algo-
rithms through indexing changes.

The purpose ol this paper is to point out certain problems
encountered in the extension of the DHT (rom one dimen-
sion to two dimensions.® There are two ways in which this
extension can be made.  Kach has its virtues, but only one is
practical. This choice requires a new convolution theorem,
which we provide. However, even with this theorem, the
two-dimensional (213 DH'I' appears not to provide a compu-
tational advantage over the DFT.

THE DISCRETE FOURIER TRANSFORM

Consider a discrete sequence p(x),x =0, ..., N — 1. The
forward DFT of p(x) is given hy
N=]
Puu) = Z plxdexp(—i2rux/NY, (1)

=t
and the inverse DFT by
| N-1
pix) = N Z P (u)exp(i2rux/N). (2)

a=()

In our notalion we depart slightly from Bracewell, who
places the scalar I/N in the forward transform in both the
DET and the DHT. This diiTers from general practice” 9
and is less efficient if forward transforms are more common
than reverse transforms. We therefore place the scalar in
the inverse transform in our definitiong of the DFT, the
DH'L, and Lhe separable discrete Hartley transform (SDH'TY
defined helow).

SYMMETRY IN THE DISCRETE HARTLEY
TRANSFORM OF A REAL SEQUENCE

Although the DHT is defined for both real and complex
sequences, its practical value arises rom the way in which it
takes advantage of the symmetry in the DFT of a real se-
quence. Therefore in what follows we consider only real
input sequences. A real sequence, deflined by N real num-
hers, has a DET that contains N complex entrics, or 2N real
numbers. However, only N of the 2N real transform values
are independent because the translorm is [lermitian; that is,
its real part is even and its imaginary part is odd., ‘The
Hartley transiorm is one way ol laking advantage of this
redundancy. Note that the sum (or difference) of an odd
and an even sequence can casily be broken apart again into
its odd and even parts. Thus, because real and imaginary
parts of the DF'1" are even and odd, respectively, we can add
‘them together with the assurance that they can be broken
apart to recover the full complex DFT when desired. We
therefore define the one-dimensional (1D} DHT of a real
sequence p(x) as the real part minus the imaginary part of
the DI

P, u) = Re Pu(w) — Im P{u). (3)
On expanding the right-hand side by means of Eq. (1),
Nl

Pylu)y = Z plx)cos 2rux/N + sin 2wux/N], {4)

x=0

Nel
Pylu) = Z p(x) cas(Zrux/NY. (»)

x =)
T'he sequence cas, defined by
cas(2mux/NY = cos(2rux/NY + sin(2rux/N), (6)

therefore serves as the basis sequence for the DHT. Note
that the DH'T may be expressed as the sum of its even and
odd parts

P = Prygu) + Prplud, (7)

where
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Py =000 + Pyl=wll, Pyold = %Py = Py,

(8)

Throughout the text we interpret all sequence arguments
modulo the length of the sequence, so, for example, it P(u) is
a scquence of length N then P(—1) = P(N — 1).

Note that the DE'Y' is easily reconstituted from the even
and odd parts of the DEL"

Pou) = Pppla) — iPyplu). (9

The inverse transform iy

N—1t
plx) = I{f N Pytcas(2mu/N). (10)

=

The principal advantage of the DH'T over the DE'L, as point-
ed oul by Bracewell, is that it transforms a real input into a
real outpul. Furthermore, the convolution theorem can be
expressed in terms of the DHT. While this expression in-
volves Lwo sequence products, rather than the single product
of the DIFI conveolution theorem, the former are products of
real quantities and will therefore require on the order of !
the number of real operations, Furthermore, if either of the
inputs to the convolution is even, as is gquite common in
filtering applications, the result reduces to a single product
of real sequences, requiring on the order of ¥ as many opera-
tions as straightforward convolution through the DFT.

THE DISCRETE HARTLEY TRANSFORM IN
TWO DIMENSIONS

One of the most frequent applications of the IYFT is in image
processing, where it is frequently used to implement convo-
lution, Forthe DH'T Lo be of use in image processing it must
be extensible to two (and more) dimensions, and these ex-
tensions must carry with them a simple form of the convolu-
tion theorerm. In one ol his papers, Bracewell has offered a
definition of the 21 DHT.2 Bul this definition does not
agree with the general 1D definition that he proposes, as
embodied in Eq. (9), or with the convelution theorem that he
has offered (Ref. 2, p. 1834),

"There are two natural candidates for the extension of the
DHT to two dimensions. The basis functions of these two
possibililies are

cas[2m{ux/N + vy/M)|, cas(2rux/N)cas(2rvy/M).

(1)
In what follows, we will consider the advantages of each
alternative.

Iirst, which definition is consistent with the definition of
the Hariley transform as the difference of even and odd
parts of the DI*T?  Recall the observation that motivated
the construction of the 11X DHT, namely, that the DFT of a
real input is Hermitian, Let p(x, ) be a real 2D sequence
(image) withx =0, ..., N—landy=0,...,M—1. Intwo
dimensions, oddness and evenness are defined with respect
1o reflections aboul both axes:

Bven {p{x, ¥} = pde, v) = hlptx, ) + pl=x, —y)], (12)
Odd  {plx, W} = polx, ) = Llple, ) — pl=x, =] (13)

Under these definitions, the real part of the DFT of a real
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inpul is even, and the imaginary part is odd. We can again
define the DHT to be the even part minus the odd part of the
DEFT:

Pylu, v) = Re Py, v) — Tm Pplu, v) (14)
=, 0) + Phyolu, o). (15)
In this case the DFT, as for one dimension, is given by
P, v) = Pyple, v) — iPyplu, v). (16}
To discover the bagis sequences of the 2D DH'T we expand
S (15). letaq = 2wux/N and b = Zwvy/M. Then
N-l M-I

Pdw, o) = Z Z plx, yY[cosla + &) + sinla + b)]  (17)

x={ y=0

VM1

N7
= 2 Z plx, v)cas(a + b). (18)

=0 y=0

Thus we sec that a definition of the 2D DHT that preserves
the symmetries of the 1T) transform leads to the first of the
1wo possible basis functions introduced above.

This definition, while it forms a natural extension of the
1D transform and leads to the convolution theorem offered
by Bracewell,? has a serious drawback. Unlike the 2D DF'T,
it is nol separable in « and v, TFast algorithms for the 2D
DFT rely on separability, and a straightforward extension of
the FHT to two dimensions would also require separability.

THE SEPARABLE TWO-DIMENSIONAL
HARTLEY TRANSFORM

Ag a solution to this dilemma, we consider an alternative
delinition of the 2D DHT, which we call the separable dis-
crete Hartley transform (SDHT), defined by
N1 M1
Pyiu, v} = 2 Z plx, vicas(Zrux/N)cas(Zruy/M), (19}

x={} =0

and the inverse transform

N1 #—1
L ‘ ‘
plx, y) = M 2(’) Z; Pylu, v)cas(2rux/N)cas(2roy/M).
u= n=

(20)

This is essentially the 2D DHT as given by Bracewell {only
the position of the scale factor is different).? Note that both
transforms are separable in x and y and can be executed by
first applying a 11D DH'L' to each row and then a 11D DH'I" to
each column {or vice versa). Since this transform no longer
obeys Eq. (9), and does not lead to the convolution theorem
derived therefrom, we must discover the relationship be-
tween the SDHT and the DFT and derive a convolution
theorem for the SDHT,

RELATION BETWEEN SEPARABLE TWO-
DIMENSIONAL HARTLEY TRANSFORM AND
DISCRETE FOURIER TRANSFORM

In the SDH'T we have gained separability but have lost the
simple relationships between the DHT and the DFT, name-
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ly, DHT = Re DT — Im DFT and DFT = Even DHT — i
Odd DEI. However, as we show below, a similarly simple
relation exists for the SDHT and the DFT. We begin by
expanding the cas Lerms in the definition of the SDHT:

N—1 M—1
o, v) = Z 2 ple, y¥ceosa + sinag){cos b+ sinb)y  (21)
=l y=0
N—1 M—1
= Z ; plx, yHeos a cos b + sing sin b
=t y=0
+ cosa sinb + sina cos b) (22)
N1 M—1
= Z Z pix, veos(a — b) + sinla + b)) (23)
=0 y=0
N-1 M-
= 2 Z o, WiRe[cos(a — &) — i sin(a — )|
x=0 y=0
— Im|cos(a + b) — i sin{a + b))} (24)
= Re P, (u, —~v) — T Pulu, v). (25)

Thus the SIDH'T is equal to the real part of the DFT reflected
about the u axis, minus the imaginary part of the DF'T. As
might be imagined, it does not matter whether the reflection
is about the u or the v axis.

Going in the other direction, we can expand the expression
for the DF'I, again using the abbreviations ¢ and b,

Nt Moot
Pulu,v) = Z Z plx, viexp[—ila + b)] (26)
PET
N=1 M=
=N Z plx, ¥)|(cos a cos b — sina sin b)
=0 y=0
—i(sina cos b + sin b cos )] (27)
N1 M1
M
= Z Z plx, v){cas a cas — b + cas — a cas b}
x=0 y=0
- ; (cas ¢ cas b — cas — a cas — b) (28)

= %[Pglu, —v) + Py(—u, v)]
- ; [Pglu, v) — Pyi—u, —u) (29)

= Pg,-]q(u, —u) — il’s()(u; v). (30}

SUMMARY OF RELATIONSHIPS

For future reference we summarize the relationships among
the DFT, DHT', and SDH'T:

Plu, vy = Pyolu, 0) + Py, —o), (31)
Py, 0) = Re I'y(u, —v) — Im Pulw, v), (32)
P, v) = Pyglu, v) + Pylu, —o), (33)
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Pu, v) = Re Pulu, v) — Im Prlu, v), (34)
Pl 0) = Pgplue, —v) — iPgolu, v), (35)
Pulu, v) = Py pu, 0) = iP) o, v). (386)

SEPARABLE TWO-DIMENSIONAL HARTLEY
TRANSFORM CONVOLUTION THEOREM

To be useful, the SDHT must yield a simple convolution
theorem. We can derive this theorem from the preceding
relations between DFT and SDH'T. Let r{x, ¥) be the result
of convolving the two real sequences plx, ¥) and g(x, v):

N—I M—1
rlx, y) = plx, y) = glx, y) = Z 2 pl, Dalx =i,y — ).
=0 j=0
(37)
IFrom the convolution theorem for the DF'T we have
R, 0) = Pulu, 0)Qplu, v). (38)

From liq. (32) we can convert this Lo an expression for the
SDHTY

Ry{u, v) = Re Ry, —v) — Im R {1, v) (39
= Re|Pi{uw, —0)Q{u, —u)]
— Im| Py, 0}@Lu, v}]. (40)
The next step is to substitute Eq. (35) for each DFT:
= Rel[Pyplu, v) ~ iPgoli, —0)][Qguly, v} — iQgo(u, —v)]}
= Im{[Pyple, —v) = iPyolu, V)] [Q(u, —v) — iQypu, V)]).
{41)

Thus we arrive al a convohition theorem

R, v} = Pyiu, 0)Qugulu, v) — Pgylu, _U)QSU(M: —uv)
+ Pyplu, —0)Qyplu, v) + Pyylu, v)Qg(u, —v).

(42)

SYMMETRICAL INPUTS

Bracewell notes that if one of the inputs to a convolution is
even, then the DH'T of the convolution reduces to the prod-
uct of the DHT"s, Note that if p(x, y) is real and even, then
DPp(ie, v) is real and even, and consequently, from Eq. (25),
P (u, ) = P.u, —v). {43)

Since Pu(u, v) is even, so is Pp{u, —v), and therefore so are
Pyu, v) and Py(u, —v). Accordingly, the SDHT of the
convolution reduces to

Rylu, vy = Pgalu, )@glu, v} -+ Pyulu, —0)Qolu, v). (44)

Thus only two products need to be computed.

COMPLEXITY

Az noted above, the SDHT is one method of exploiting the
symmetry of the DF'T of a real sequence. Other well-known
metheds allow one to compute the DFT of a real sequence in
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essentially half the number of operations required for a
complex sequence 'Y Let ug call this sort of transform a
real DIFT (RDED). Furthermore, the result of a RDFT on a
real sequence of length N is N/2 distinet complex values.
Following Bracewell, lel us assume that for a real input
sequence of length & the number of real operations required
by SDHT and RDFT are approximately equal. {Sorensen
et al.t recently showed that the 11) DHT in general requires
slightly more real operations than the DFT.) Convolution
by the RDET will require N/2 complex multiplications, or
approximalely 2N real multiplications. Convolulion by the
SDHT will require 4N real multiplications. When one of
the inpuls is symmetrical, then, as noted above, only 2N real
multiplications are required. In neither case, however, does
the SDHT confer an advantage over the DFT.

SUMMARY

We have shown Lhatl the most natural extension of the DHT
to two dimensions fails Lo be separable in the two dimen-
gions. We have examined an alternative, separable form for
the 21D DH'LY, originally proposed by Bracewell. We have
determined its relation to the DT and have derived a corre-
sponding convolution theorem. Finally, we nole that the
DHT is unlikely to provide faster convolution than the DHT
in the general case.
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